CO2 Emmisions Effects cp NLPEC GAMS short $title Multi-Region Growth Model Based on Global 2100 (MR5MCP,SEQ=134) * This multi-region growth model used data from the Global 2100 * model used to anlayze the economic cost of carbon dioxide emissions. * * Reference: Manne A and R Richels, Buying Greenhouse Insurance - * the Economic Cost of Dioxide Emission Limits, MIT Press * Cambridge, 1992. SET TP /T0*T11/; SET ITER Iterations /IT1*IT10/; SCALAR DEV Current deviation (%), CONTOL Convergence tolerance (%) /0.001/; SCALAR NY NUMBER OF YEARS PER PERIOD NYB2 NY OVER 2; NY = 110 / (CARD(TP)-1); NYB2 = NY/2; SETS RG Regions /USA, OOECD, USSR, CHINA, ROW/, TLAST(TP) Last projection year, TBASE(TP) Base year, TFIRST(TP) First projection year, TNEXT(TP,TP) Subsequent period indicator, PP(TP) Projection period; ALIAS (T,TP), (R,RG); PARAMETER NPER(TP); NPER(T) = ORD(T); TNEXT(T,T+1) = YES; TBASE(T) = YES$(ORD(T) EQ 1); TFIRST(T) = YES$(ORD(T) EQ 2); TLAST(T) = YES$(ORD(T) EQ CARD(T)); PP(T) = YES$(NOT TBASE(T)); * Read the global 2100 data: TABLE MACRO(*, RG) MACROECONOMIC AND OTHER PARAMETERS USA OOECD USSR CHINA ROW GDP 5.6 10.2 2.68 1.1 3.34 KGDP 2.4 2.8 3.0 3.0 3.0 DEPR 5.00 5.00 5.00 5.00 5.00 KPVS 0.24 0.28 0.30 0.30 0.30 $ONTEXT GDP INITIAL GDP ($ TRILLIONS) KGDP INITIAL CAPITAL-GDP RATIO DEPR ANNUAL PERCENT DEPRECIATION KPVS CAPITAL VALUE SHARE PARAMETER $OFFTEXT SET DECADE /1990,2000,2010,2020,2030,2040,2050,2060,2070,2080,2090,2100/; PARAMETER WEIGHT(DECADE,TP); TABLE GROW(*, *) POTENTIAL GDP GROWTH RATES - ANNUAL PERCENT USA OOECD USSR CHINA ROW 1990 2.50 2.70 2.50 4.50 3.75 2000 2.00 2.00 2.00 4.00 3.30 2010 2.00 2.00 2.00 4.00 3.30 2020 1.75 1.75 1.75 3.75 3.05 2030 1.50 1.50 1.50 3.50 2.80 2040 1.50 1.50 1.50 3.50 2.80 2050 1.25 1.25 1.25 3.25 2.55 2060 1.25 1.25 1.25 3.25 2.55 2070 1.125 1.125 1.125 3.125 2.425 2080 1.00 1.00 1.00 3.00 2.30 2090 1.00 1.00 1.00 3.00 2.30 2100 1.00 1.00 1.00 3.00 2.30; * CONVERT GROWTH RATES FROM DATES TO TIME PERIODS: GROW(TP,"YEAR") = 1990 + 110 * (ORD(TP)-1)/(CARD(TP)-1); WEIGHT(DECADE,TP) = ABS(GROW(TP,"YEAR") - (1990 + 10 * (ORD(DECADE)-1))); WEIGHT(DECADE,TP) = ((10 - WEIGHT(DECADE,TP))/10 )$(WEIGHT(DECADE,TP) LE 10); GROW(TP,RG) = SUM(DECADE, WEIGHT(DECADE,TP)*GROW(DECADE,RG)); GROW(DECADE,RG) = 0; DISPLAY GROW; PARAMETER UDR(RG,TP) Utility discount rate KPVS(RG) Capital value share KGDP(RG) Capital-GDP ratio DEPR(RG) Depreciation rate K0(RG) Initial capital RK0(RG) Benchmark capital rental price L0(RG) Initial labor Y0(RG) Initial GDP I0(RG) Initial investment C0(RG) Initial consumption, WB(RG) Baseline welfare index, KSRV(RG) N-year capital survival factor UDF(RG,T) Utility discount factor - period T L(RG,T) Labor supply quantity, QREF(T,RG) Reference (balanced growth) quantity path PREF(T,RG) Reference (steady state) price path PKBAR(RG) Steady-state rate of return; DEPR(RG) = MACRO("DEPR",RG)/100; KPVS(RG) = MACRO("KPVS",RG); Y0(RG) = MACRO("GDP",RG); KGDP(RG) = MACRO("KGDP",RG); K0(RG) = KGDP(RG) * Y0(RG); * Convert growth rates from percentages to fractions: GROW(T,RG) = GROW(T,RG) / 100; KSRV(RG) = 1/(1+DEPR(RG))**NY; L0(RG) = Y0(RG) - KPVS(RG) * Y0(RG); QREF(TBASE,RG) = 1; LOOP(T, QREF(T+1,RG) = QREF(T,RG) * (1 + GROW(T,RG))**NY;); RK0(RG) = KPVS(RG) / KGDP(RG); UDR(RG,T) = RK0(RG) - DEPR(RG) - GROW(T,RG); PREF(TBASE,RG) = 1; PREF(TFIRST,RG) = 1; LOOP(T$(ORD(T) GT 1), PREF(T+1,RG) = PREF(T,RG) /((1+UDR(RG,T))*(1+GROW(T,RG)))**NY ); DISPLAY PREF, QREF; L(RG,PP) = L0(RG) * QREF(PP,RG); LOOP(TBASE, I0(RG) = K0(RG)*(GROW(TBASE,RG)+DEPR(RG)); ); C0(RG) = Y0(RG) - I0(RG); WB(RG) = C0(RG)*SUM(PP, PREF(PP,"USA")*QREF(PP,RG)); * COMPUTE THE UTILITY DISCOUNT FACTOR: UDF(RG,TBASE) = 1; LOOP(T, UDF(RG,T+1) = UDF(RG,T) /(1+UDR(RG,T))**NY; ); UDF(RG,TLAST) = UDF(RG,TLAST) / (1-1/(1+UDR(RG,TLAST))**NY); UDF(RG,T) = UDF(RG,T) / SUM(PP, UDF(RG,PP)); DISPLAY UDR, UDF; PARAMETER WAGE, RENT, INCOME; WAGE(PP,RG) = PREF(PP,RG); RENT(PP,RG) = RK0(RG) * PREF(PP,RG); INCOME(RG) = SUM(PP, WAGE(PP,RG) * L(RG,PP)) + SUM(TFIRST, RENT(TFIRST,RG) * (K0(RG)+NYB2*I0(RG))*KSRV(RG)); OPTION WORK=248000; POSITIVE VARIABLES Y(RG,T) NEW VINTAGE PRODUCTION INV(RG,T) INVESTMENT K(RG,T) CAPITAL STOCK P(T) FUTURE PRICE PTC(RG,T) TERMINAL CAPITAL PRICE W(RG,T) WAGE RATE PK(RG,T) CAPITAL RETURN RK(RG,T) RENTAL PRICE ON CAPITAL I(RG) INCOME; EQUATIONS MKT_C(T) OUTPUT BALANCE, CAPSTK(RG,T) CAPITAL STOCK, MKT_K(RG,T) CAPITAL USE, MKT_L(RG,T) LABOR SUPPLY, TC(RG,T) TERMINAL INVESTMENT, PRF_Y(RG,T) PRODUCER PROFIT, PRF_I(RG,T) INVESTMENT PROFIT, PRF_K(RG,T) CAPITAL STOCK PROFIT, INCDEF(RG) INCOME DEFINITION; MKT_C(T)$PP(T).. SUM(RG, Y(RG,T)) =G= SUM(RG, UDF(RG,T)*I(RG)/P(T) + INV(RG,T)); CAPSTK(RG,T)$PP(T).. NYB2 * INV(RG,T) + NYB2 * KSRV(RG) * INV(RG,T-1) =G= K(RG,T) - K(RG,T-1)*KSRV(RG); MKT_K(RG,T)$PP(T).. K(RG,T) =G= (Y(RG,T)/Y0(RG)) * K0(RG) * (W(RG,T)/PREF(T,RG))**(1-KPVS(RG)) * (RK(RG,T)/(RK0(RG)*PREF(T,RG)))**KPVS(RG) /(RK(RG,T)/(RK0(RG)*PREF(T,RG))); MKT_L(RG,T)$PP(T).. L(RG,T) =G= (Y(RG,T)/Y0(RG)) * L0(RG) * (W(RG,T)/PREF(T,RG))**(1-KPVS(RG)) * (RK(RG,T)/(RK0(RG)*PREF(T,RG)))**KPVS(RG) /(W(RG,T)/PREF(T,RG)); TC(RG,T)$TLAST(T).. INV(RG,T) =G= K(RG,T) * (GROW(T,RG) + DEPR(RG)); PRF_Y(RG,T)$PP(T).. (1-KPVS(RG)) * LOG(W(RG,T)/PREF(T,RG)) + KPVS(RG) * LOG(RK(RG,T)/(RK0(RG)*PREF(T,RG))) =G= LOG(P(T)/PREF(T,RG)); PRF_I(RG,T)$PP(T).. P(T) =G= NYB2*PK(RG,T) + NYB2*KSRV(RG)*PK(RG,T+1) + PTC(RG,T)$TLAST(T); PRF_K(RG,T)$PP(T).. PK(RG,T) + (PTC(RG,T)*(GROW(T,RG)+DEPR(RG)))$TLAST(T) =G= RK(RG,T) + KSRV(RG) * PK(RG,T+1); INCDEF(RG).. I(RG) =G= SUM(PP, W(RG,PP) * L(RG,PP)) + SUM(TFIRST, (NYB2*I0(RG) + K0(RG)) * KSRV(RG) * PK(RG,TFIRST)); MODEL MRG / MKT_C.P, CAPSTK.PK, MKT_K.RK, MKT_L.W, TC.PTC, PRF_Y.Y, PRF_I.INV, PRF_K.K, INCDEF.I /; * WORK ON THE FULL HORIZON MODEL: TLAST(T) = YES$(ORD(T) EQ CARD(T)); PP(T) = YES$(NOT TBASE(T)); * INSTALL BOUNDS TO AVOID BAD FUNCTION CALLS: P.LO(T) = 0.0001 * PREF(T,"USA"); RK.LO(RG,T) = 0.0001 * RK0(RG) * PREF(T,RG); W.LO(RG,T) = 0.0001 * PREF(T,RG); * INSTALL SOME SCALE FACTORS: Y.SCALE(RG,PP) = Y0(RG) * QREF(PP,RG); INV.SCALE(RG,PP) = I0(RG) * QREF(PP,RG); K.SCALE(RG,PP) = K0(RG) * QREF(PP,RG); P.SCALE(T) = PREF(T,"USA"); PTC.SCALE(RG,TLAST) = PREF(TLAST,RG); W.SCALE(RG,T) = PREF(T,RG); PK.SCALE(RG,T) = PREF(T,RG); RK.SCALE(RG,T) = RK0(RG)*PREF(T,RG); I.SCALE(RG) = INCOME(RG); MRG.SCALEOPT = 1; * INSTALL DEFAULT STARTING POINT: Y.L(RG,PP) = QREF(PP,RG) * Y0(RG); INV.L(RG,PP) = QREF(PP,RG) * I0(RG); K.L(RG,PP) = QREF(PP,RG) * K0(RG); P.L(PP) = PREF(PP,"USA"); PTC.L(RG,TLAST) = PREF(TLAST,RG); W.L(RG,PP) = PREF(PP,RG); PK.L(RG,PP) = PREF(PP,RG); RK.L(RG,PP) = RK0(RG) * PREF(PP,RG); I.L(RG) = INCOME(RG); INV.FX(RG,TBASE) = I0(RG); K.FX(RG,TBASE) = K0(RG); * FIX ONE INCOME LEVEL TO NORMALIZE THE PRICE SYSTEM: I.FX(RG)$(ORD(RG) EQ 1) = INCOME(RG); MRG.optfile = 1; SOLVE MRG USING MCP; subsolver coinipopt This multi-region growth model used data from the Global 2100 model used to anlayze the economic cost of carbon dioxide emissions. Reference: Manne A and R Richels, Buying Greenhouse Insurance - the Economic Cost of Dioxide Emission Limits, MIT Press Cambridge, 1992.